http2 explained
  • English
    • Background
    • HTTP Today
    • Things done to overcome latency pains
    • Updating HTTP
    • http2 concepts
    • The http2 protocol
    • Extensions
    • An http2 world
    • http2 in Firefox
    • http2 in Chromium
    • http2 in curl
    • After http2
    • Further reading
    • Thanks
  • Español
    • Antecedentes
    • HTTP hoy
    • Estrategias para evitar los dolores de latencia
    • Actualizando HTTP
    • Conceptos de http2
    • El protocolo http2
    • Extensiones
    • Un mundo http2
    • http2 en Firefox
    • http2 en Chromium
    • http2 en curl
    • Después de http2
    • Otras lecturas
    • Agradecimientos
  • فارسی
    • مقدمه و معرفی
    • پیش‌زمینه
    • HTTP امروز
    • کارهایی که برای غلبه بر تأخیرها انجام شده
    • آپدیت‌کردن HTTP
    • مفاهیم http2
    • پرتکل http2
    • افزونه‌ها
    • دنیایی با http2
    • http2 در فایرفاکس
    • http2 در کرومیوم
    • http2 در curl
    • بعد از http2
    • خواندن بیشتر
    • تقدیر و تشکر
    • واژه‌نامه
  • Français
    • Avant-propos
    • HTTP aujourd'hui
    • Rustines pour s'accommoder de la latence
    • Mettre à jour HTTP
    • Concepts http2
    • Le protocole http2
    • Extensions
    • Le monde http2
    • http2 et Firefox
    • http2 et Chromium
    • http2 et curl
    • Après http2
    • Lecture complémentaire
    • Remerciements
  • Italiano
    • Background
    • HTTP oggi
    • Tecniche applicate al contrasto della latenza
    • Aggiornare HTTP
    • http2 a grandi linee
    • Il protocollo http2
    • Estensioni
    • Un mondo di http2
    • http2 in Firefox
    • http2 in Chromium
    • http2 in curl
    • Dopo http2
    • Altre letture
    • Riconoscimenti, Ringraziamenti
  • 日本語
    • 背景
    • HTTPの現状確認
    • レイテンシーの闇を克服せよ
    • もうやめて、HTTP 1.1のライフはゼロよ
    • http2のコンセプト
    • http2プロトコル
    • http2は拡張の夢を見る
    • http2化される世界
    • Firefoxにおけるhttp2
    • Chromiumにおけるhttp2
    • curlにおけるhttp2
    • http2の次にくるもの
    • 参考文献
    • 謝辞
  • 한국어
    • 배경
    • HTTP 현재
    • 대기시간의 고통을 극복하기 위해 한일
    • HTTP 업데이팅
    • http2 컨셉
    • http2 프로토콜 (번역되지 않은)
    • 연장선 (번역되지 않은)
    • http2 세계 (번역되지 않은)
    • Firefox에서의 http2
    • Chromium에서의 http2
    • curl에서의 http2
    • HTTP2 다음에 오는 것
    • 참조
    • 감사의 말
  • Português
    • Antecedentes
    • HTTP Hoje
    • Estratégias para evitar as dores da latência
    • Atualizando HTTP
    • Conceitos de http2
    • O protocolo http2
    • Extensões
    • Um mundo http2
    • http2 e Firefox
    • http2 e Chromium
    • http2 e curl
    • Após o http2
    • Outras leituras
    • Agradecimentos
  • русском
    • История
    • HTTP сегодня
    • Шаги, предпринятые для преодоления задержки
    • Обновление HTTP
    • Концепция http2
    • Протокол http2
    • Расширения
    • Мир http2
    • http2 в Firefox
    • http2 в Chromium
    • http2 в curl
    • После http2
    • Дальнейшее чтение
    • Благодарности
  • Svenska
    • Bakgrund
    • HTTP idag
    • Tricks för att komma över fördröjningssmärtor
    • Uppdatera HTTP
    • http2-koncept
    • http2-protokollet
    • Utökningar
    • En http2-värld
    • http2 i Firefox
    • http2 i Chromium
    • http2 i curl
    • Efter http2
    • Fortsatt läsning
    • Tack
  • Türkçe
    • Arkaplan
    • HTTP'nin Bugünü
    • Gecikmelerin üstesinden gelmek için yapılanlar
    • HTTP'nin güncellenmesi
    • http2 konseptleri
    • http2 protokolü
    • Uzantılar
    • http2 dünyası
    • Firefox'da http2
    • Chromium'da http2
    • curl'de http2
    • http2 sonrası
    • Daha fazla bilgi için
    • Teşekkürler
  • 中文
    • 背景
    • HTTP的现状
    • 那些年,克服延迟之道
    • 升级HTTP
    • http2的观念
    • http2协议
    • 扩展
    • http2的世界
    • Firefox里的http2
    • Chromium里的http2
    • Curl里的http2
    • 后http2时代
    • 扩展阅读
    • 致谢
Powered by GitBook
On this page
  • 2.1 HTTP 1.1 is huge
  • 2.2 A world of options
  • 2.3 Inadequate use of TCP
  • 2.4 Transfer sizes and number of objects
  • 2.5 Latency kills
  • 2.6. Head-of-line blocking

Was this helpful?

Export as PDF
  1. English

HTTP Today

HTTP 1.1 has turned into a protocol used for virtually everything on the Internet. Huge investments have been made in protocols and infrastructure that take advantage of this, to the extent that it is often easier today to make things run on top of HTTP rather than building something new on its own.

2.1 HTTP 1.1 is huge

When HTTP was created and thrown out into the world, it was probably perceived as a rather simple and straightforward protocol, but time has proved that to be false. HTTP 1.0 in RFC 1945 is a 60-page specification released in 1996. RFC 2616 that describes HTTP 1.1 was released only three years later in 1999 and had grown significantly to 176 pages. Yet when we within IETF worked on the update to that spec, it was split up and converted into six documents with a much larger page count in total (resulting in RFC 7230 and family). By any count, HTTP 1.1 is big and includes a myriad of details, subtleties and, not the least, a lot of optional parts.

2.2 A world of options

HTTP 1.1's nature of having lots of tiny details and options available for later extensions has grown a software ecosystem where almost no implementation ever implements everything – and it isn't even really possible to exactly tell what “everything” is. This has led to a situation where features that were initially little-used saw very few implementations, and those that did implement the features then saw very little use of them.

Later on, this caused an interoperability problem when clients and servers started to increase the use of such features. HTTP pipelining is a primary example of such a feature.

2.3 Inadequate use of TCP

HTTP 1.1 has a hard time really taking full advantage of all the power and performance that TCP offers. HTTP clients and browsers have to be very creative to find solutions that decrease page load times.

Other attempts that have been going on in parallel over the years have also confirmed that TCP is not that easy to replace, and thus we keep working on improving both TCP and the protocols on top of it.

Simply put, TCP can be utilized better to avoid pauses or wasted intervals that could have been used to send or receive more data. The following sections will highlight some of these shortcomings.

2.4 Transfer sizes and number of objects

When looking at the trend for some of the most popular sites on the web today and what it takes to download their front pages, a clear pattern emerges. Over the years, the amount of data that needs to be retrieved has gradually risen up to and above 1.9MB. What is more important in this context is that, on average, over 100 individual resources are required to display each page.

As the graph below shows, the trend has been going on for a while, and there is little to no indication that it will change anytime soon. It shows the growth of the total transfer size (in green) and the total number of requests used on average (in red) to serve the most popular web sites in the world, and how they have changed over the last four years.

2.5 Latency kills

HTTP 1.1 is very latency sensitive, partly because HTTP pipelining is still riddled with enough problems to remain switched off to a large percentage of users.

While we've seen a great increase in available bandwidth to people over the last few years, we have not seen the same level of improvements in reducing latency. High-latency links, like many of the current mobile technologies, make it hard to get a good and fast web experience even if you have a really high bandwidth connection.

Another use case requiring low latency is certain kinds of video, like video conferencing, gaming and similar where there's not just a pre-generated stream to send out.

2.6. Head-of-line blocking

HTTP pipelining is a way to send another request while waiting for the response to a previous request. It is very similar to queuing at a counter at the bank or in a supermarket: you just don't know if the person in front of you is a quick customer or that annoying one that will take forever before he/she is done. This is known as head-of-line blocking.

Sure, you can attempt to pick the line you believe is the correct one, and at times you can even start a new line of your own. But in the end, you can't avoid making a decision. And once it is made, you cannot switch lines.

Creating a new line is also associated with a performance and resource penalty, so that's not scalable beyond a smaller number of lines. There's just no perfect solution to this.

Even today, most desktop web browsers ship with HTTP pipelining disabled by default.

PreviousBackgroundNextThings done to overcome latency pains

Last updated 5 years ago

Was this helpful?

transfer size growth

Additional reading on this subject can be found in the Firefox .

bugzilla entry 264354